1

MASTER OF ELECTRICAL AND COMPUTER ENGINEERING (MECE) DEGREE

Program Learning Outcomes for the MECE Degree

Upon completing the MECE degree, students will be able to:

- 1. Design and implement technical solutions to real-world problems that reflect an advanced command of principles in mathematics and science.
- 2. Communicate effectively expert analysis of technical problems and features of proposed solutions to stakeholders.
- 3. Practice as an expert specialist in at least one of the major sub-fields of electrical and computer engineering.

Requirements for the MECE Degree

The MECE degree is a non-thesis master's degree. For general university requirements, please see Non-Thesis Master's Degrees (https://ga.rice.edu/graduate-students/academic-policies-procedures/regulations-procedures-non-thesis-masters-degrees/). For additional requirements, regulations, and procedures for all graduate programs, please see All Graduate Students (https://ga.rice.edu/graduate-students/academic-policies-procedures/regulations-procedures/leases/). Students pursuing the MECE degree must complete:

- A minimum of 10 courses (30-34 credit hours, depending on course selection) to satisfy degree requirements.
- A minimum of 30 credit hours of graduate-level study (graduate semester credit hours, coursework at the 500-level or above).
- A minimum of 27 graduate semester credit hours must be taken at Rice University.
- A minimum of 24 graduate semester credit hours must be taken in standard or traditional courses (with a course type of lecture, seminar, laboratory, lecture/laboratory).
- A minimum residency enrollment of one fall or spring semester of part-time graduate study at Rice University.
- A minimum of 3 courses (9 credit hours) from the Capstone Requirement.
 - 1 course (3 credit hours) to fulfill the Capstone Foundations requirement.
 - 2 courses (6 credit hours) to fulfill the Capstone Experience Project requirement.
- A minimum of 1 course (3 credit hours) from the Engineering Communications Requirement.
- A minimum of 2 courses (6 credit hours) from the Engineering Software Development Requirement.
- A minimum of 2 courses (6 credit hours) in one area of specialization (see below for areas of specialization). The MECE degree program offers six areas of specialization:
 - Computer Engineering (p. 2), or
 - Computer Vision (p. 3), or
 - <u>Data Science</u> (p. 3), or
 - Digital Health (p. 3), or
 - Neuroengineering (p. 3), or

- Quantum Engineering (p. 3), or
- Wireless Systems (p. 4).
- A minimum of 2 courses (6 credit hours) from the Elective Requirements.
- · ELEC 698 each semester in residence at Rice University.
- A maximum of 1 course (3 graduate semester credit hours) from transfer credit. For additional departmental guidelines regarding transfer credit, see the <u>Policies</u> (p. 4) tab.
- A minimum overall GPA of 2.67 or higher in all Rice coursework.
- A minimum program GPA of 3.00 or higher in all Rice coursework that satisfies requirements for the non-thesis master's degree with a minimum grade of C (2.00 grade points) in each course.

Students are admitted to the MECE degree program in the fall semester. MECE students are to consult with an academic advisor on the MECE Committee each semester in order to identify and clearly document their individual curricular requirements or degree plan to be followed.

The courses listed below satisfy the requirements for this degree program. In certain instances, courses not on this official list may be substituted upon approval of the program's academic advisor or, where applicable, the department or program's Director of Graduate Studies. Course substitutions must be formally applied and entered into Degree Works by the department or program's <u>Official Certifier (https://</u>registrar.rice.edu/facstaff/degreeworks/officialcertifier/). Additionally, these must be approved by the Office of Graduate and Postdoctoral Studies. Students and their academic advisors should identify and clearly document the courses to be taken.

Summary

Oummu	3				
Code	Title	Credit Hours			
Total Cred	it Hours Required for the MECE Degree	30-34			
Degree	Degree Requirements				
Code	Title	Credit Hours			
Capstone Requirement					
Select 1 of the following Capstone topical areas: Computer Engineering, Computer Vision, Data Science, Digital Health, Neuroengineering, Quantum Engineering, or Wireless Systems					
Capstone:	Foundations				
Select 1 course from the following:					
ELEC 5	22 ADVANCED VLSI DESIGN				
ELEC 5	51 MODERN COMMUNICATION THEORY AN PRACTICE	ID			
ELEC 5 COMP					
ELEC 5	78 INTRODUCTION TO MACHINE LEARNING	;			
ELEC 5	30 QUANTUM MECHANICS AND REAL-WOR APPLICATIONS	LD			
ELEC 5	37 INTRODUCTION TO NEUROENGINEERING MEASURING AND MANIPULATING NEURAL ACTIVITY	3:			
Capstone: Experience Project					
Salact 1 fr	om the following (minimum of 2 semesters):	6-8			

Select 1 from the following (minimum of 2 semesters):

6-8

DSCI 535 / COMP 549	APPLIED MACHINE LEARNING AND DATA SCIENCE PROJECTS (2 semesters		Quantum Eng Wireless Sys		
	required)		,		
ELEC 594	MECE CAPSTONE PROJECT (2 semesters required)		Elective Requirements <i>Free Elective Requirement: select 2 additional courses as free</i> <i>electives</i> ¹		
Engineering Con	nmunications Requirement		Professional Ma	aster's Seminar	
Select 1 course fr	rom the following:	3	ELEC 698	ECE PROFESSIONAL MASTERS SEMINAR	C
ENGI 501	WORKPLACE COMMUNICATION FOR PROFESSIONAL MASTER'S STUDENTS IN ENGINEERING		Total Credit Hou	SERIES ²	30-34
ENGI 510	TECHNICAL AND MANAGERIAL COMMUNICATIONS		1	Additional Information ective Requirement may be fulfilled by any 2 cours	es (6
ENGI 555	ENGINEERING PERSUASION: HOW TO DRIVE DECISIONS AND CHANGE		Departme) selected from the following: ental (ELEC) course offerings taught by ECE faculty.	
RCEL 542	PROFESSIONAL COMMUNICATION FOR ENGINEERING LEADERS		 Research coursework, such as ELEC 590 or ELEC 591, when either are taken for at least 3 credit hours. Any of the following courses: ENGI 528/CEVE 528, ENGI 529/CEVE 529, 		
Engineering Soft	tware Development Requirement			0/NSCI 610, ENGI 615, or NSCI 511.	_ 023,
Select 2 courses	from the following:	6-8	Any other	r course approved by the student's MECE academic advis	sor.
COMP 504	GRADUATE OBJECT-ORIENTED PROGRAMMING AND DESIGN		² ELEC 698 is taken for a Satisfactory/Unsatisfactory grade and must		
COMP 533	INTRODUCTION TO DATABASE SYSTEMS			ed with a Satisfactory grade. As a S/U course it do	
COMP 534	PARALLEL COMPUTING			requirement of a minimum grade of C (2.00 grade ired course.	points)
COMP 539	SOFTWARE ENGINEERING METHODOLOGY		in caen requ		
COMP 553	BIG DATA MANAGEMENT FOR DATA SCIENCE		Areas of Specialization Students must complete a minimum of 2 courses (6 credit hours) from		
COMP 562	FUNDAMENTALS OF ROBOTIC MANIPULATION		one Area of Spe	cialization.	
COMP 614	COMPUTER PROGRAMMING FOR DATA SCIENCE		Area of Specia Code	lization: Computer Engineering Title	Credi [®] Hours
ELEC 512 / COMP 582	GRADUATE DESIGN AND ANALYSIS OF ALGORITHMS			(6 credit hours) from the following:	ť
ELEC 546 / COMP 546	INTRODUCTION TO COMPUTER VISION		ELEC 515	MACHINE LEARNING FOR RESOURCE- CONSTRAINED PLATFORMS	
ELEC 550 /	ALGORITHMIC ROBOTICS		ELEC 516	ANALOG INTEGRATED CIRCUITS	
COMP 550 /			ELEC 517	MICROWAVE ENGINEERING	
MECH 550 ELEC 552 /	OPERATING SYSTEMS AND CONCURRENT		ELEC 521	ADVANCED DIGITAL INTEGRATED CIRCUITS DESIGN	
COMP 521	PROGRAMMING		ELEC 522	ADVANCED VLSI DESIGN	
ELEC 565	SOLID STATE MATERIALS AND DEVICE		ELEC 523	INTRODUCTION TO MICROFABRICATION	
ELEC 568	APPLICATIONS INTRODUCTION TO QUANTUM		ELEC 526 / COMP 526	HIGH PERFORMANCE COMPUTER ARCHITECTURE	
	COMPUTING WITH QISKIT		ELEC 527	VLSI SYSTEMS DESIGN	
ELEC 581	QUANTUM INFORMATION PROCESSING SYSTEMS		ELEC 543 ELEC 553	ADVANCED HIGH-SPEED SYSTEM DESIGN MOBILE AND EMBEDDED SYSTEM DESIGN	
ELEC 581 ELEC 584					
	SYSTEMS QUANTUM PHYSICS IN SEMICONDUCTOR		ELEC 553	MOBILE AND EMBEDDED SYSTEM DESIGN AND APPLICATION	
ELEC 584	SYSTEMS QUANTUM PHYSICS IN SEMICONDUCTOR DEVICES		ELEC 553 ELEC 554 /	MOBILE AND EMBEDDED SYSTEM DESIGN AND APPLICATION	
ELEC 584 STAT 605 STAT 606 Area of Specializ Select 1 of the for	SYSTEMS QUANTUM PHYSICS IN SEMICONDUCTOR DEVICES R FOR DATA SCIENCE SAS STATISTICAL PROGRAMMING zation Ilowing Areas of Specialization (see Areas of	6	ELEC 553 ELEC 554 / COMP 554	MOBILE AND EMBEDDED SYSTEM DESIGN AND APPLICATION COMPUTER SYSTEMS ARCHITECTURE UBIQUITOUS AND WEARABLE COMPUTING	
ELEC 584 STAT 605 STAT 606 Area of Specializ Select 1 of the for Specialization be	SYSTEMS QUANTUM PHYSICS IN SEMICONDUCTOR DEVICES R FOR DATA SCIENCE SAS STATISTICAL PROGRAMMING Exation Illowing Areas of Specialization (see Areas of low):	6	ELEC 553 ELEC 554 / COMP 554 ELEC 574	MOBILE AND EMBEDDED SYSTEM DESIGN AND APPLICATION COMPUTER SYSTEMS ARCHITECTURE UBIQUITOUS AND WEARABLE COMPUTING	6
ELEC 584 STAT 605 STAT 606 Area of Specializ Select 1 of the for Specialization best Computer Eng	SYSTEMS QUANTUM PHYSICS IN SEMICONDUCTOR DEVICES R FOR DATA SCIENCE SAS STATISTICAL PROGRAMMING Exation Nowing Areas of Specialization (see Areas of low): gineering	6	ELEC 553 ELEC 554 / COMP 554 ELEC 574	MOBILE AND EMBEDDED SYSTEM DESIGN AND APPLICATION COMPUTER SYSTEMS ARCHITECTURE UBIQUITOUS AND WEARABLE COMPUTING	
ELEC 584 STAT 605 STAT 606 Area of Specializ Select 1 of the for Specialization be Computer Eng Computer Vis	SYSTEMS QUANTUM PHYSICS IN SEMICONDUCTOR DEVICES R FOR DATA SCIENCE SAS STATISTICAL PROGRAMMING Exation Nowing Areas of Specialization (see Areas of low): gineering	6	ELEC 553 ELEC 554 / COMP 554 ELEC 574	MOBILE AND EMBEDDED SYSTEM DESIGN AND APPLICATION COMPUTER SYSTEMS ARCHITECTURE UBIQUITOUS AND WEARABLE COMPUTING	6
ELEC 584 STAT 605 STAT 606 Area of Specializ Select 1 of the for Specialization best Computer Eng	SYSTEMS QUANTUM PHYSICS IN SEMICONDUCTOR DEVICES R FOR DATA SCIENCE SAS STATISTICAL PROGRAMMING tation Nowing Areas of Specialization (see Areas of low): gineering ion	6	ELEC 553 ELEC 554 / COMP 554 ELEC 574	MOBILE AND EMBEDDED SYSTEM DESIGN AND APPLICATION COMPUTER SYSTEMS ARCHITECTURE UBIQUITOUS AND WEARABLE COMPUTING	e

Area of Createli	-stien: Computer Vision			
Area of Speciali Code	zation: Computer Vision	Credit	ELEC 631	ADVANCED MACHINE LEARNING
bout	inte	Hours	Total Credit Hour	S
Select 2 courses (6 credit hours) from the following:	6		
ELEC 502 /	NEURAL MACHINE LEARNING I			zation: Digital Health
COMP 502 / STAT 502			Code	Title
	4(STATISTICAL MACHINE LEARNING		Select 2 courses (6 credit hours) from the following:
ELEC 515	MACHINE LEARNING FOR RESOURCE-		ELEC 533 /	INTRODUCTION TO RANDOM PROCESSES
	CONSTRAINED PLATFORMS		CMOR 553 /	AND APPLICATIONS
ELEC 531	STATISTICAL SIGNAL PROCESSING		STAT 583	
ELEC 533 / CMOR 553 /	INTRODUCTION TO RANDOM PROCESSES AND APPLICATIONS		ELEC 541	3D VISION: FROM AUTONOMOUS CARS TO THE METAVERSE
STAT 583	AND AFFEIGATIONS		ELEC 542	GENERATIVE AI FOR IMAGE DATA
ELEC 541	3D VISION: FROM AUTONOMOUS CARS TO		ELEC 545	INTRODUCTION TO DIGITAL IMAGE AND
	THE METAVERSE			VIDEO PROCESSING
ELEC 542	GENERATIVE AI FOR IMAGE DATA		ELEC 546 /	INTRODUCTION TO COMPUTER VISION
ELEC 546 /	INTRODUCTION TO COMPUTER VISION		COMP 546 ELEC 558	DIGITAL SIGNAL PROCESSING
COMP 546 ELEC 549	COMPUTATIONAL PHOTOGRAPHY		ELEC 570	DISTRIBUTED METHODS FOR
ELEC 553	MOBILE AND EMBEDDED SYSTEM DESIGN			OPTIMIZATION AND MACHINE LEARNING
LLLO 335	AND APPLICATION		Total Credit Hour	s
ELEC 558	DIGITAL SIGNAL PROCESSING	Area of Specialization: Neuroengineering		action: Nourconsingering
ELEC 575	LEARNING FROM SENSOR DATA		Code	Title
ELEC 576 /	A PRACTICAL INTRODUCTION TO DEEP		ooue	
COMP 576			Select 2 courses (6 credit hours) from the following:
ELEC 578 ELEC 631	INTRODUCTION TO MACHINE LEARNING ADVANCED MACHINE LEARNING		ELEC 502 /	NEURAL MACHINE LEARNING I
			COMP 502 /	
•	zation: Data Science		STAT 502 ELEC 523	INTRODUCTION TO MICROFABRICATION
Code	Title	Credit Hours	ELEC 533 /	INTRODUCTION TO BANDOM PROCESSES
Select 2 courses (6 credit hours) from the following:	6	CMOR 553 /	AND APPLICATIONS
ELEC 502 /	NEURAL MACHINE LEARNING I	0	STAT 583	
COMP 502 /			ELEC 548 /	MACHINE LEARNING AND SIGNAL
STAT 502			BIOE 548 ELEC 582	PROCESSING FOR NEURO ENGINEERING IMAGING OPTICS
	4(STATISTICAL MACHINE LEARNING		ELEC 582	INTRODUCTION TO NEUROENGINEERING:
ELEC 506	LINEAR ALGEBRA FOR DATA SCIENCE		2220 307	MEASURING AND MANIPULATING
ELEC 515	MACHINE LEARNING FOR RESOURCE- CONSTRAINED PLATFORMS			NEURAL ACTIVITY
ELEC 519	DATA SCIENCE AND DYNAMICAL		ELEC 588 /	THEORETICAL NEUROSCIENCE I:
	SYSTEMS		CMOR 615 / NEUR 615	BIOPHYSICAL MODELING OF CELLS AND CIRCUITS
ELEC 531	STATISTICAL SIGNAL PROCESSING		ELEC 589	NEURAL COMPUTATION
ELEC 533 /	INTRODUCTION TO RANDOM PROCESSES		ELEC 680 /	NANO-NEUROTECHNOLOGY
CMOR 553 /	AND APPLICATIONS		BIOE 680	
STAT 583 ELEC 535	INFORMATION THEORY		ELEC 682	SPOTLIGHT ON LATEST
ELEC 546 /	INTRODUCTION TO COMPUTER VISION			NEUROTECHNOLOGY
COMP 546			NEUR 582	INTRODUCTION TO COMPUTATIONAL NEUROSCIENCE
ELEC 558	DIGITAL SIGNAL PROCESSING		Total Credit Hour	
ELEC 575	LEARNING FROM SENSOR DATA			
ELEC 576 /	A PRACTICAL INTRODUCTION TO DEEP		-	zation: Quantum Engineering
COMP 576 ELEC 578	MACHINE LEARNING INTRODUCTION TO MACHINE LEARNING		Code	Title
LLLO JIO			Select 2 courses (6 credit hours) from the following:
			ELEC 517	MICROWAVE ENGINEERING

3

6

Credit Hours 6

6

6

Credit Hours 6

Credit Hours 6

	ELEC 523	INTRODUCTION TO MICROFABRICATION
	ELEC 560	PHYSICS OF SENSOR MATERIALS AND NANOSENSOR TECHNOLOGY
	ELEC 562	OPTOELECTRONIC DEVICES
	ELEC 563 / PHYS 563	INTRODUCTION TO SOLID STATE PHYSICS
	ELEC 566	NANOPHOTONICS AND METAMATERIALS
	ELEC 567	NANO-OPTICS
	ELEC 568	INTRODUCTION TO QUANTUM COMPUTING WITH QISKIT
	ELEC 569 / PHYS 569	ULTRAFAST OPTICAL PHENOMENA
	ELEC 571	IMAGING AT THE NANOSCALE
	ELEC 572	FINITE ELEMENT METHOD FOR MULTIPHYSICS MODELING
	ELEC 580	QUANTUM MECHANICS AND REAL-WORLD APPLICATIONS
	ELEC 605 / PHYS 605	COMPUTATIONAL ELECTRODYNAMICS AND NANOPHOTONICS
	ELEC 660	QUANTUM INFORMATION SCIENCE AND TECHNOLOGY

Total Credit Hours

Area of Specialization: Wireless Systems Code Title

Credit Hours 6

6

6

Select 2 courses (6 credit hours) from the following:

	•	,
	ELEC 531	STATISTICAL SIGNAL PROCESSING
	ELEC 533 / CMOR 553 / STAT 583	INTRODUCTION TO RANDOM PROCESSES AND APPLICATIONS
	ELEC 535	INFORMATION THEORY
	ELEC 536	ARCHITECTURE FOR WIRELESS COMMUNICATIONS
	ELEC 537 / MECH 537	COMMUNICATION NETWORKS
	ELEC 539	INTRODUCTION TO COMMUNICATION NETWORKS
	ELEC 551	MODERN COMMUNICATION THEORY AND PRACTICE
	ELEC 558	DIGITAL SIGNAL PROCESSING
	ELEC 573	NETWORK SCIENCE AND ANALYTICS

Total Credit Hours

Policies for the MECE Degree Department of Electrical and Computer Engineering Graduate Program Handbook

The General Announcements (GA) is the official Rice curriculum. As an additional resource for students, the department of Electrical and Computer Engineering publishes a graduate program handbook, which can be found here: <u>https://gradhandbooks.rice.edu/2023_24/</u> Electrical_Computer_Engineering_Graduate_Handbook.pdf

Transfer Credit

For Rice University's policy regarding transfer credit, see <u>Transfer Credit</u> (https://ga.rice.edu/graduate-students/academic-policies-procedures/

<u>regulations-procedures-all-degrees/#transfer</u>). Some departments and programs have additional restrictions on transfer credit. Students are encouraged to meet with their academic program's advisor when considering transfer credit possibilities.

Departmental Transfer Credit Guidelines

Students pursuing the MECE degree should be aware of the following departmental transfer credit guidelines:

- No more than 1 course (3 credit hours) of transfer credit from U.S. or international universities of similar standing as Rice may apply towards the degree.
- Requests for transfer credit will be considered by the program director (and/or the program's official transfer credit advisor) on an individual case-by-case basis.

Teaching Assistant Requirement

Students must be enrolled in at least 3 credit hours to be able to serve as a teaching assistant (TA).

Additional Information

For additional information, please see the Electrical and Computer Engineering website: <u>https://www.ece.rice.edu/</u>.

Opportunities for the MECE Degree Fifth-Year Master's Degree Option for Rice Undergraduate Students

In certain situations and with some terminal master's degree programs, Rice students have an option to pursue a master's degree by adding an additional fifth year to their four years of undergraduate studies.

Advanced Rice undergraduate students in good academic standing typically apply to the master's degree program during their junior or senior year. Upon acceptance, depending on course load, financial aid status, and other variables, they may then start taking some required courses of the master's degree program. A plan of study will need to be approved by the student's undergraduate major advisor and the master's degree program director.

As part of this option and opportunity, Rice undergraduate students:

- must complete the requirements for a bachelor's degree and the master's degree independently of each other (i.e. no course may be counted toward the fulfillment of both degrees).
- should be aware there could be financial aid implications if the conversion of undergraduate coursework to that of graduate level reduces their earned undergraduate credit for any semester below that of full-time status (12 credit hours).
- more information on this Undergraduate Graduate Concurrent Enrollment opportunity, including specific information on the registration process can be found <u>here (https://ga.rice.edu/</u> <u>undergraduate-students/academic-opportunities/undergraduategraduate-concurrent-enrollment/</u>).

Rice undergraduate students completing studies in science and engineering may have the option to pursue the Master of Electrical and Computer Engineering (MECE) degree. For additional information, students should contact their undergraduate major advisor and the MECE program director.

Additional Information

For additional information, please see the Electrical and Computer Engineering website: <u>https://www.ece.rice.edu/</u>.