Credit

MASTER OF DATA SCIENCE (MDS) DEGREE

Program Learning Outcomes for the MDS Degree

Upon completing the MDS degree, students will be able to:

- Develop a graduate-level understanding of the computational and statistical foundations of Data Science.
- Through in-depth study, obtain mastery of either one of the core methods of Data Science or one application area of Data Science.
- Apply Data Science techniques to solve difficult, real world problems, beginning with raw and dirty data, and ending with actionable insights that are effectively communicated to a lay client.

Requirements for the MDS Degree

The MDS degree is a non-thesis master's degree. For general university requirements, please see Non-Thesis Master's Degrees (https://ga.rice.edu/graduate-students/academic-policies-procedures/regulations-procedures-non-thesis-masters-degrees/). For additional requirements, regulations, and procedures for all graduate programs, please see All Graduate Students (https://ga.rice.edu/graduate-students/academic-policies-procedures/regulations-procedures-all-degrees/). Students pursuing the MDS degree must complete:

- A minimum of 10-13 courses (31-35 credit hours), depending on course selection, to satisfy degree requirements.
- A minimum of 31 credit hours of graduate-level study (graduate semester credit hours, coursework at the 500-level or above).
- A minimum of 24 graduate semester credit hours credit hours must be taken at Rice University.
- A minimum of 24 graduate semester credit hours must be taken in standard or traditional courses (with a course type of lecture, seminar, laboratory, lecture/laboratory).
- A minimum residency enrollment of one fall or spring semester of part-time graduate study at Rice University.
- A maximum of 2 courses (6 graduate semester credit hours) from transfer credit. For additional departmental guidelines regarding transfer credit, see the <u>Policies</u> (p. 3) tab.
- The requirements for one area of specialization (see below for areas of specialization). The MDS degree program offers five areas of specialization:
 - Business Analytics (p. 2), or
 - · Energy Transition and Sustainability (p. 2), or
 - · Image Processing (p. 2), or
 - · Machine Learning (p. 2), or
 - · Sport Analytics (p. 3).
- A <u>Professional Development</u> (p. 3) requirement.
- · A minimum overall GPA of 2.67 or higher in all Rice coursework.
- A minimum program GPA of 2.67 or higher in all Rice coursework that satisfies requirements for the non-thesis master's degree.

The courses listed below satisfy the requirements for this degree program. In certain instances, courses not on this official list may be substituted upon approval of the program's academic advisor, or where applicable, the department or program's Director of Graduate

Studies. Course substitutions must be formally applied and entered into Degree Works by the department or program's Official Certifier (https://registrar.rice.edu/facstaff/degreeworks/officialcertifier/). Additionally, these must be approved by the Office of Graduate and Postdoctoral Studies. Students and their academic advisors should identify and clearly document the courses to be taken.

Summary

Code

COMP 643

COMP 642

Select 1 course from the following:

Code	Title	Credit
Total Credit Hours Required for the MDS Degree		Hours 31-35
Dograo Ro	auiremente	

Degree Requirements

	1	Hours
Core Requirements	s'	
Big Data		
Select 1 course from	n the following:	3
COMP 543	GRADUATE TOOLS AND MODELS - DATA SCIENCE	
COMP 553	BIG DATA MANAGEMENT FOR DATA SCIENCE	

Data Visualization		
COMP 665	DATA VISUALIZATION	3
Machine Learning		

MACHINE LEARNING

BIG DATA

CCIENICE

ELEC 578	INTRODUCTION TO MACHINE LEARNING	
Programming		
COMP 614	COMPUTER PROGRAMMING FOR DATA	3

	SOILIVOL	
Statistics		
COMP 680	STATISTICS FOR COMPUTING AND DATA SCIENCE	3
et at a to a	1	

Elective Requirements

01.7		0.4
Select 1 course from	n the following:	3-4
COMP 510	COMPUTER ETHICS	
COMP 566	AI ETHICS	
COMP 580	PROBABILISTIC ALGORITHMS AND DATA STRUCTURE	
COMP 582 / ELEC 512	GRADUATE DESIGN AND ANALYSIS OF ALGORITHMS	
COMP 621	SYSTEMS SOFTWARE	
COMP 622	DATA ETHICS	
COMP 628	CYBERSECURITY	
COMP 644	DATA PRIVACY & SECURITY	
COMP 682	PRINCIPLES OF ALGORITHMS AND SOFTWARE AREA	

Area of Specialization 1

Select 1 from the following Areas of Specialization (see Areas of Specialization below):

Business Analytics

Energy Transition and Sustainability

Total Credit Hour	s	31-35
COMP 549	DATA SCIENCE PROJECTS	
DSCI 535 /	APPLIED MACHINE LEARNING AND	4
Capstone 1		
	t post-baccalaureate relevant work at least 10 weeks.	
Students are re	rnship 10 weeks to 6 months in length. esponsible for obtaining and selecting an t best aligns with their career goals.	
A Professional	Development course (see course list below)	
Select 1 from the i	following:	0-3
Professional Dev	elopment	
Sport Analytic	s	
Machine Learr	ning	
Image Process	sing	

Footnotes and Additional Information

Students admitted into either program (online or on-campus) will be allowed to take up to 9 credit hours in the other modality (on-campus or online) with permission from the program advisors.

Areas of Specialization

Code

Students must complete a minimum of 3 courses (minimum of 9 credit hours) from one Area of Specialization.

Select a minimum of 3 courses (minimum of 9 credit hours) from

Credit

Hours

9

Area of Specialization: Business Analytics Title

the following:	
BUSI 711 & BUSI 712	DATA-DRIVEN MARKETING I and DATA-DRIVEN MARKETING II ¹
BUSI 721 & BUSI 722	DATA-DRIVEN FINANCE I and DATA-DRIVEN FINANCE II ²
BUSI 731 & BUSI 732	FOUNDATIONS OF OPERATIONS MANAGEMENT and QUANTITATIVE OPERATIONS ³
INDE 545	PRESCRIPTIVE ANALYTICS
INDE 546	COMPUTATIONAL PRESCRIPTIVE ANALYTICS
INDE 567	OPTIMIZATION METHODS IN FINANCE
STAT 649	QUANTITATIVE FINANCIAL RISK MANAGEMENT
STAT 682	QUANTITATIVE FINANCIAL ANALYTICS

Footnotes and Additional Information

Total Credit Hours

- The course BUSI 711 can only be counted towards the Area of Specialization: Business Analytics if the course BUSI 712 is also counted towards the Area of Specialization: Business Analytics.
- The course BUSI 721 can only be counted towards the Area of Specialization: Business Analytics if the course BUSI 722 is also counted towards the Area of Specialization: Business Analytics.
- The course BUSI 731 can only be counted towards the Area of Specialization: Business Analytics if the course BUSI 732 is also counted towards the Area of Specialization: Business Analytics.

Area of Specializa Code	ation: Energy Transition and Sustainability Title	Credit Hours
Select a minimum of the following:	of 3 courses (minimum of 9 credit hours) from	9
CHBE 614	ADVANCED COMPUTATIONAL METHODS FOR ENERGY	
EEPS 583	DATA MANAGEMENT AND DATA GOVERNANCE	
EEPS 585	COMPUTATIONAL AND DATA SCIENCE IN THE ENERGY INDUSTRY	
EEPS 651	GEOPHYSICAL DATA ANALYSIS: INVERSE METHODS	
Total Credit Hours		9
Area of Specializa	ation: Image Processing	
Code	Title	Credit Hours
the following:	of 3 courses (minimum of 9 credit hours) from	9
COMP 646	DEEP LEARNING FOR VISION AND LANGUAGE	
ELEC 542	GENERATIVE AI FOR IMAGE DATA	
ELEC 546 / COMP 546	INTRODUCTION TO COMPUTER VISION	
ELEC 549	COMPUTATIONAL PHOTOGRAPHY	
Total Credit Hours		9
Area of Specializa	ation: Machine Learning	
Code	Title	0
	Title	
	of 3 courses (minimum of 9 credit hours) from	Hours
Select a minimum o		Hours
Select a minimum of the following:	of 3 courses (minimum of 9 credit hours) from OPTIMIZATION: ALGORITHMS,	Hours
Select a minimum of the following: COMP 514	of 3 courses (minimum of 9 credit hours) from OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS	Hours
Select a minimum of the following: COMP 514	of 3 courses (minimum of 9 credit hours) from OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631 COMP 641	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND LANGUAGE	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631 COMP 641 COMP 646 COMP 647 COMP 652 COMP 653	of 3 courses (minimum of 9 credit hours) from OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND LANGUAGE DEEP LEARNING	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631 COMP 641 COMP 646 COMP 647 COMP 652 COMP 653 ELEC 515	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND LANGUAGE DEEP LEARNING NATURAL LANGUAGE PROCESSING STATISTICAL MACHINE LEARNING MACHINE LEARNING FOR RESOURCE- CONSTRAINED PLATFORMS	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631 COMP 641 COMP 646 COMP 647 COMP 652 COMP 653	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND LANGUAGE DEEP LEARNING NATURAL LANGUAGE PROCESSING STATISTICAL MACHINE LEARNING MACHINE LEARNING FOR RESOURCE-	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631 COMP 641 COMP 646 COMP 647 COMP 652 COMP 653 ELEC 515	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND LANGUAGE DEEP LEARNING NATURAL LANGUAGE PROCESSING STATISTICAL MACHINE LEARNING MACHINE LEARNING FOR RESOURCE- CONSTRAINED PLATFORMS	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631 COMP 641 COMP 646 COMP 647 COMP 652 COMP 653 ELEC 515	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND LANGUAGE DEEP LEARNING NATURAL LANGUAGE PROCESSING STATISTICAL MACHINE LEARNING MACHINE LEARNING FOR RESOURCE- CONSTRAINED PLATFORMS GENERATIVE AI FOR IMAGE DATA DISTRIBUTED METHODS FOR OPTIMIZATION AND MACHINE	
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631 COMP 641 COMP 646 COMP 647 COMP 652 COMP 653 ELEC 515 ELEC 570	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND LANGUAGE DEEP LEARNING NATURAL LANGUAGE PROCESSING STATISTICAL MACHINE LEARNING MACHINE LEARNING FOR RESOURCE- CONSTRAINED PLATFORMS GENERATIVE AI FOR IMAGE DATA DISTRIBUTED METHODS FOR OPTIMIZATION AND MACHINE LEARNING	Hours
Select a minimum of the following: COMP 514 COMP 552 COMP 559 COMP 631 COMP 641 COMP 646 COMP 652 COMP 652 COMP 653 ELEC 515 ELEC 570	OPTIMIZATION: ALGORITHMS, COMPLEXITY, AND APPROXIMATIONS REINFORCEMENT LEARNING MACHINE LEARNING WITH GRAPHS INTRODUCTION TO INFORMATION RETRIEVAL GRADUATE SEMINAR ON INTERACTIVE MACHINE LEARNING DEEP LEARNING FOR VISION AND LANGUAGE DEEP LEARNING NATURAL LANGUAGE PROCESSING STATISTICAL MACHINE LEARNING MACHINE LEARNING FOR RESOURCE- CONSTRAINED PLATFORMS GENERATIVE AI FOR IMAGE DATA DISTRIBUTED METHODS FOR OPTIMIZATION AND MACHINE LEARNING NETWORK SCIENCE AND ANALYTICS	Credit Hours 9

ELEC 631	ADVANCED MACHINE LEARNING			
Total Credit Hours		9		
Area of Specializat	Area of Specialization: Sport Analytics			
Code	Title	Credit Hours		
Select a minimum of the following:	3 courses (minimum of 9 credit hours) from	9		
SMGT 530	INTRODUCTION TO SPORT ANALYTICS			
SMGT 531	ADVANCED SPORT ANALYTICS			
SMGT 532	SOCCER ANALYTICS			
SMGT 535	BASEBALL ANALYTICS			
SMGT 590	SEMINAR IN SPORTS ANALYTICS			
Total Credit Hours		9		

Professional Development

In order to fulfill the Professional Development requirement, students must select up to 1 course (up to 3 credit hours) from the following, *or*

- Complete a relevant internship10-weeks to 6 months in length.
 Students are responsible for obtaining and selecting an internship that best aligns with their career goals, or
- Complete current or past post-baccalaureate relevant work experience of at least 10 weeks.

Code	Title	Credit Hours
Select up to 1 course	from the following:	0-3
RCEL 501	ENGINEERING MANAGEMENT & LEADERSHIP THEORY AND APPLICATION	
RCEL 502	ENGINEERING PROJECT MANAGEMENT	
RCEL 503	ENGINEERING PRODUCT MANAGEMENT IN INDUSTRY 4.0	
RCEL 504	ETHICAL-TECHNICAL LEADERSHIP	
RCEL 505	ENGINEERING ECONOMICS FOR ENGINEERING LEADERS	

Policies for the MDS Degree

Department of Computer Science Graduate Program Handbook

The General Announcements (GA) is the official Rice curriculum. As an additional resource for students, the department of Computer Science publishes a graduate program handbook, which can be found here: https://gradhandbooks.rice.edu/2024_25/Computer_Science_Graduate_Handbook.pdf.

Financial Aid

No financial aid is available from Rice University or the Computer Science Department for students in the MDS degree program.

Transfer Credit

For Rice University's policy regarding transfer credit, see <u>Transfer Credit</u> (https://ga.rice.edu/graduate-students/academic-policies-procedures/regulations-procedures-all-degrees/#transfer). Some departments and programs have additional restrictions on transfer credit. Requests for transfer credit must be approved for Rice equivalency by the appropriate

academic department offering the Rice equivalent course (corresponding to the subject code of the course content) and by the Office of Graduate and Postdoctoral Studies (GPS). Students are encouraged to meet with their academic program's advisor when considering transfer credit possibilities.

Departmental Transfer Credit Guidelines

Students pursuing the MDS degree should be aware of the following departmental transfer credit guidelines:

- No more than 2 courses (6 credit hours) of credit from another U.S. or international universities of similar standing as Rice may apply towards the degree.
- Transfer courses must be comparable in content and depth to the corresponding course at Rice and must not have counted toward another degree.

Additional Information

For additional information, please see the *Graduate Programs* tab of the <u>Computer Science website</u> (https://www.cs.rice.edu/academics/graduate-programs/) or contact the department at <u>gradapp@rice.edu</u>.

Opportunities for the MDS Degree Fifth-Year Master's Degree Option for Rice Undergraduate Students

In certain situations and with some terminal master's degree programs, Rice students have an option to pursue a master's degree by adding an additional fifth year to their four years of undergraduate studies.

Advanced Rice undergraduate students in good academic standing typically apply to the master's degree program during their junior or senior year. Upon acceptance, depending on course load, financial aid status, and other variables, they may then start taking some required courses of the master's degree program. A plan of study will need to be approved by the student's undergraduate major advisor and the master's degree program director.

As part of this option and opportunity, Rice undergraduate students:

- must complete the requirements for a bachelor's degree and the master's degree independently of each other (i.e. no course may be counted toward the fulfillment of both degrees).
- should be aware there could be financial aid implications if the conversion of undergraduate coursework to that of graduate level reduces their earned undergraduate credit for any semester below that of full-time status (12 credit hours).
- more information on this *Undergraduate Graduate Concurrent Enrollment* opportunity, including specific information on the registration process can be found https://ga.rice.edu/undergraduate-concurrent-enrollment/).

Rice undergraduate students completing studies in science and engineering may have the option to pursue the Master of Data Science (MDS) degree. For additional information, students should contact their undergraduate major advisor and the MDS program director.

Additional Information

For additional information, please see the *Graduate Programs* tab of the <u>Computer Science website</u> (https://www.cs.rice.edu/academics/graduate-programs/) or contact the department at <u>gradapp@rice.edu</u>.